EDAM: An Efficient Clique Discovery Algorithm with Frequency Transformation for Finding Motifs

نویسندگان

  • Yifei Ma
  • Guoren Wang
  • Yongguang Li
  • Yuhai Zhao
چکیده

Finding motifs in DNA sequences plays an important role in deciphering transcriptional regulatory mechanisms and drug target identification. In this paper, we propose an efficient algorithm, EDAM, for finding motifs based on frequency transformation and Minimum Bounding Rectangle (MBR) techniques. It works in three phases, frequency transformation, MBR-clique searching and motif discovery. In frequency transformation, EDAM divides the sample sequences into a set of substrings by sliding windows, then transforms them to frequency vectors which are stored in MBRs. In MBR-clique searching, based on the frequency distance theorems EDAM searches for MBR-cliques used for motif discovery. In motif discovery, EDAM discovers larger cliques by extending smaller cliques with their neighbors. To accelerate the clique discovery, we propose a range query facility to avoid unnecessary computations for clique extension. The experimental results illustrate that EDAM well solves the running time bottleneck of the motif discovery problem in large DNA database.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of an Efficient Hybrid Method for Motif Discovery in DNA Sequences

This work presents a hybrid method for motif discovery in DNA sequences. The proposed method called SPSO-Lk, borrows the concept of Chebyshev polynomials and uses the stochastic local search to improve the performance of the basic PSO algorithm as a motif finder. The Chebyshev polynomial concept encourages us to use a linear combination of previously discovered velocities beyond that proposed b...

متن کامل

Finding the maximum clique in massive graphs

1. ABSTRACT Cliques refer to subgraphs in an undirected graph such that vertices in each subgraph are pairwise adjacent. The maximum clique problem, to find the clique with most vertices in a given graph, has been extensively studied. Besides its theoretical value as an NPhard problem, the maximum clique problem is known to have direct applications in various fields, such as community search in...

متن کامل

Updating finite element model using frequency domain decomposition method and bees algorithm

The following study deals with the updating the finite element model of structures using the operational modal analysis. The updating process uses an evolutionary optimization algorithm, namely bees algorithm which applies instinctive behavior of honeybees for finding food sources. To determine the uncertain updated parameters such as geometry and material properties of the structure, local and...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

An Efficient Genetic Algorithm for Task Scheduling on Heterogeneous Computing Systems Based on TRIZ

An efficient assignment and scheduling of tasks is one of the key elements in effective utilization of heterogeneous multiprocessor systems. The task scheduling problem has been proven to be NP-hard is the reason why we used meta-heuristic methods for finding a suboptimal schedule. In this paper we proposed a new approach using TRIZ (specially 40 inventive principles). The basic idea of thi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006